驅動方式電動 輸送介質清水 揚程10-200 流量1L/S-40L/S 功率0.55-200 認證CCCF
.臥式多級泵內聲響反常,泵不出水。
緣由:進口管路阻力過大,吸水高度過大,有空氣進入吸水管,運送液體的溫度過高。
解決方法:查看進口管路有無阻塞,整理底閥,下降液體溫度或下降吸水高度。
緣由:臥式多級泵軸與電機軸不同心,葉輪不平衡,軸承空隙過大。
輪中固體顆粒運動軌跡的明確結論;并且采用統計方法對實驗數據進行分析,確定顆粒在礦用多級泵葉輪進口的運動參數,可以為葉輪的設計和磨損研究提供有益的實驗證據。試驗結果分析:粗、細顆粒對運動軌跡的影響對于密度大于水的顆粒,不論其顆粒大小如何,在從葉輪進口至出口的運動中,都有向葉片工作面靠攏的趨勢,只不過其靠攏的速度和位置不同。對于質量小的細顆粒,其靠攏的速度較慢,一般集中于葉片出口區域和葉片相撞。隨著顆粒質量,其靠攏的速度加快,與葉片相撞的位置向葉片進口移動。對于質量大的粗顆粒,大都與葉片進口部位相撞。大顆粒一進入流道就離開工作面,并不因為質量大,而是與葉片頭部撞擊的結果。從葉片進口處可以看出,由于慣性力作用,粗顆粒在葉片進口處的相對運動角比細顆粒更小,更易向葉片頭部靠攏,與頭部相撞。其中一部分顆粒與葉片頭部相撞后,落到靠近葉片工田愛民,等:礦用多級泵泵葉輪中顆粒軌跡與磨損的關系作面的流道里,由于顆粒與葉片撞擊力的作用,顆粒離開工作面運動,不再與葉片出口工作面相撞。一部分顆粒和葉片頭部相撞后,暫時停止了前進,在這一段時間,這些顆粒和葉片進口邊一起繞泵軸旋轉,獲得一附加礦用多級泵力,而后落入靠近葉片背面的流道。細顆粒由于慣性較小,在葉片進口不會集中向葉片頭部運動,但在流道中運動時不斷偏向葉片工作面,使葉片出口處顆粒濃度,造成該處葉片嚴重磨損。這是由于顆粒進入葉片區之前,要由軸向運動變為徑向運動,很多顆粒與后蓋板內表面相撞。可以認為碰撞是彈性的,能量損失很小,這樣碰撞前后的速度幾乎不變。但是反射角決定碰撞位置,由此造成顆粒進口速度的平均值基本不變,而進口角有一定的離散性。葉輪轉速的影響,葉輪轉速的提高,使顆粒軌跡的包角ψ的統計平均值加大,而顆粒的停留時間變短,隨著轉速的提高,顆粒的慣性加大,顆粒就更趨向葉片壓力面,從而其磨損。
礦用多級泵防護罩的結構種類有哪些?
1、純鐵皮型,將一塊完整的鐵皮做成橋拱形式,將兩斷的邊折疊,在折疊的邊上均勻的開2個空,用于固定在底座上。這種結構很簡單,制造方便,成本低,適用在基礎的防護要求中,如小心的離心泵;
2、鐵皮加鐵條型,這種組合是防護罩的上端是橋拱型,下面四根鐵條支撐,將鐵條折成直角,在上面開孔用于固定在底座上。這樣的結構因為有鐵條支持,結構比較穩定,不容易變形,從這邊可以看到那邊,視線較好;3、鐵皮加鋼絲網型,這種防護罩的做法是,先用鐵皮做成橋拱型防護罩,然后將上面一部分用剪刀剪掉,將鋼絲網焊接在上面。這種結構的防護罩,非常方便查看聯軸器的運行效果,及時對聯軸器同心度;
4、鐵條加鋼絲網型,這種防護罩的結構是將兩根鐵條做成橋拱型,然后將鋼絲網焊接在上面,這種結構是全可見型,聯軸器運轉的情況盡收眼底,視野非常好,這種結構用得很多;
5、封閉式純鐵皮型,這種防護罩做出來后,幾乎全部將聯軸器蓋住,看不到里面,由純鐵皮制造,沒有鐵條骨架支撐。因為是全封閉式的,所以查看聯軸器是不方便的,這種結構只適合用在微型的礦用多級泵上,他們的聯軸器跑偏的機率小,并且對聯軸器同心度要求沒有那么高;
6、圓柱形立防護罩,這中防護罩安裝不是固定在基礎上,他是通過的結構直接固定在聯軸器邊上;
7、柴油機礦用多級泵防護罩,這種結構是圓形的,純鐵皮制造,是通過均布的螺栓固定在柴油機上,適用在用柴油機帶動的礦用多級泵,并且是直聯式的結構;
8、皮帶輪并聯式防護罩,當礦用多級泵與電機或柴油機的連接是通過皮帶輪連接時,做防護罩就需要根據皮帶的走向和距離定做,這種防護罩做功為復雜,耗材也多;
9、鐵條加鐵皮可打開是防護罩,這種防護罩下面是四跟鐵條固定在底座上,上面是鐵皮橋拱型護罩,一邊用荷葉連接,一邊可以手動打開,這種結構很好,用起來很方便,建議采用,它的結構穩定,不容易變形。
10、包裹式不銹鋼防護罩,這種防護罩使用全不銹鋼材質,將整個電機都包裹起來,主要是用在衛生要求高的不銹鋼衛生泵上。
11、裙擺式防護罩,通過名字就知道,穿裙子一定是站著的,沒錯,這個防護罩是用在立式礦用多級泵上的,安裝位置是從電機與礦用多級泵接觸面,主要作用是防止掉東西到聯軸器位置,防止絲帶,毛發等卷軸器中。
機械加工精度不夠,原因有很多,有的是機械密封本身的加工精度不夠,這方面的原因容易引起人們的注意,也容易找到。
但有時是多級泵其它部件的加工精度不夠,這方面的原因,不容易引起人們的注意。例如:泵軸、軸套、泵體、密封腔體的加大精度不夠等原因。這些原因的存在對機械密封的密封效果是非常不利的。
合理地設計軸向力的平衡裝置,消除軸向竄量。為了滿足這一要求,對于多級泵,比較理想的設計方案有兩個:一個是平衡盤加軸向止推軸承,由平衡盤平衡軸向力,由軸向止推軸承對泵軸進行軸向限位;另一個是平衡鼓加軸向止推軸承,由平衡鼓平衡掉大部分軸向力,剩余的軸向力由止推軸承承擔,同時軸向止推軸承對多級泵軸進行軸向限位。種方案的關鍵是合理地設計平衡鼓,使之能夠真正平衡掉大部分軸向力。對于其它單級泵、中開泵等產品,在設計時采取一些措施保證泵軸的竄量在機械密封所要求的范圍之內。