詳細介紹
美國本特利BENTLY傳感器 3500/32-01-00
美國本特利BENTLY傳感器 3500/32-01-00
1基本定義
編輯
傳感器國家標準GB7665-87對傳感器下的定義是:“能感受規定的被測量件并按照一定的規律(數學函數法則)轉換成可用信號的器件或裝置,通常由敏感元件和轉換元件組成”。
中國物聯網校企聯盟認為,傳感器的存在和發展,讓物體有了觸覺、味覺和嗅覺等感官,讓物體慢慢變得活了起來。”
“傳感器”在新韋式大詞典中定義為:“從一個系統接受功率,通常以另一種形式將功率送到第二個系統中的器件”。[1]
2主要作用
編輯
傳感器匯總圖片精選(6)人們為了從外界獲取信息,必須借助于感覺器官。而單靠人們自身的感覺器官,在研究自然現象和規律以及生產活動中它們的功能就遠遠不夠了。為適應這種情況,就需要傳感器。因此可以說,傳感器是人類五官的延長,又稱之為電五官。
新技術革命的到來,世界開始進入信息時代。在利用信息的過程中,首先要解決的就是要獲取準確可靠的信息,而傳感器是獲取自然和生產領域中信息的主要途徑與手段。
在現代工業生產尤其是自動化生產過程中,要用各種傳感器來和控制生產過程中的各個參數,使設備工作在正常狀態或狀態,并使產品達到的質量。因此可以說,沒有眾多的優良的傳感器,現代化生產也就失去了基礎。
在基礎學科研究中,傳感器更具有突出的地位。現代科學技術的發展,進入了許多新領域:例如在宏觀上要觀察上千光年的茫茫宇宙,微觀上要觀察小到fm的粒子世界,縱向上要觀察長達數十萬年的天體演化,短到 s的瞬間反應。此外,還出現了對深化物質認識、開拓新能源、新材料等具有重要作用的各種技術研究,如高溫、低溫、高壓、高真空、一定磁場、弱磁場等等。顯然,要獲取大量人類感官無法直接獲取的信息,沒有相適應的傳感器是不可能的。許多基礎科學研究的障礙,首先就在于對象信息的獲取存在困難,而一些新機理和高靈敏度的檢測傳感器的出現,往往會導致該領域內的突破。一些傳感器的發展,往往是一些邊緣學科開發的。
傳感器早已滲透到諸如工業生產、宇宙開發、海洋探測、環境保護、資源調查、醫學診斷、生物工程、甚至文物保護等等極其之泛的領域。可以毫不夸張地說,從茫茫的太空,到浩瀚的海洋,以至各種復雜的工程系統,幾乎每一個現代化項目,都離不開各種各樣的傳感器。
由此可見,傳感器技術在發展經濟、推動社會進步方面的重要作用,是十分明顯的。世界各國都十分重視這一領域的發展。相信不久的將來,傳感器技術將會出現一個飛躍,達到與其重要地位相稱的新水平。
3主要特點
編輯
傳感器傳感器的特點包括:微型化、數字化、智能化、多功能化、系統化、網絡化,它不僅促進了傳統產業的改造和更新換代,而且還可能建立新型工業,從而成為21世紀新的經濟增長點。微型化是建立在微電子機械系統(MEMS)技術基礎上的,已成功應用在硅器件上做成硅壓力傳感器。
4組成介紹
編輯
傳感器一般由敏感元件、轉換元件、變換電路和輔助電源四部分組成,如圖1 所示。
圖1 傳感器的組成
敏感元件直接感受被測量,并輸出與被測量有確定關系的物理量信號;轉換元件將敏感元件輸出的物理量信號轉換為電信號;變換電路負責對轉換元件輸出的電信號進行放大調制;轉換元件和變換電路一般還需要輔助電源供電。
5主要功能
編輯
常將傳感器的功能與人類5大感覺器官相比擬:
光敏傳感器——視覺
聲敏傳感器——聽覺
氣敏傳感器——嗅覺
化學傳感器——味覺
傳感器(圖1)壓敏、溫敏、流體傳感器——觸覺
敏感元件的分類:
物理類,基于力、熱、光、電、磁和聲等物理效應。
化學類,基于化學反應的原理。
生物類,基于酶、抗體、和激素等分子識別功能。
通常據其基本感知功能可分為熱敏元件、光敏元件、氣敏元件、力敏元件、磁敏元件、濕敏元件、聲敏元件、放射線敏感元件、色敏元件和味敏元件等類(還有人曾將敏感元件分46類)。
6常見種類
編輯
電阻式
電阻式傳感器是將被測量,如位移、形變、力、加速度、濕度、溫度等這些物理量轉換式成電阻值這樣的一種器件。主要有電阻應變式、壓阻式、熱電阻、熱敏、氣敏、濕敏等電阻式傳感器件。
變頻功率
變頻功率傳感器(3)變頻功率傳感器通過對輸入的電壓、電流信號進行交流采樣,再將采樣值通過電纜、光纖等傳輸系統與數字量輸入二次儀表相連,數字量輸入二次儀表對電壓、電流的采樣值進行運算,可以獲取電壓有效值、電流有效值、基波電壓、基波電流、諧波電壓、諧波電流、有功功率、基波功率、諧波功率等參數。
稱重
稱重傳感器是一種能夠將重力轉變為電信號的力→電轉換裝置,是電子衡器的一個關鍵部件。
能夠實現力→電轉換的傳感器有多種,常見的有電阻應變式、電磁力式和電容式等。電磁力式主要用于電子天平,電容式用于部分電子吊秤,而絕大多數衡器產品所用的還是電阻應變式稱重傳感器。電阻應變式稱重傳感器結構較簡單,準確度高,適用面廣,且能夠在相對比較差的環境下使用。因此電阻應變式稱重傳感器在衡器中得到了廣泛地運用。
電阻應變式
傳感器中的電阻應變片具有金屬的應變效應,即在外力作用下產生機械形變,從而使電阻值隨之發生相應的變化。電阻應變片主要有金屬和半導體兩類,金屬應變片有金屬絲式、箔式、薄膜式之分。半導體應變片具有靈敏度高(通常是絲式、箔式的幾十倍)、橫向效應小等優點。
壓阻式
壓阻式傳感器是根據半導體材料的壓阻效應在半導體材料的基片上經擴散電阻而制成的器件。其基片可直接作為測量傳感元件,擴散電阻在基片內接成電橋形式。當基片受到外力作用而產生形變時,各電阻值將發生變化,電橋就會產生相應的不平衡輸出。
用作壓阻式傳感器的基片(或稱膜片)材料主要為硅片和鍺片,硅片為敏感材料而制成的硅壓阻傳感器越來越受到人們的重視,尤其是以測量壓力和速度的固態壓阻式傳感器應用較為普遍。
熱電阻
傳感器(圖6)熱電阻測溫是基于金屬導體的電阻值隨溫度的增加而增加這一特性來進行溫度測量的。熱電阻大都由純金屬材料制成,目前應用多的是鉑和銅,此外,已開始采用鎳、錳和銠等材料制造熱電阻。
熱電阻傳感器主要是利用電阻值隨溫度變化而變化這一特性來測量溫度及與溫度有關的參數。在溫度檢測精度要求比較高的場合,這種傳感器比較適用。較為廣泛的熱電阻材料為鉑、銅、鎳等,它們具有電阻溫度系數大、線性好、性能穩定、使用溫度范圍寬、加工容易等特點。用于測量-200℃~+500℃范圍內的溫度。
熱電阻傳感器分類:
1、NTC熱電阻傳感器:
該類傳感器為負溫度系數傳感器,即傳感器阻值隨溫度的升高而減小。
2、PTC熱電阻傳感器:
該類傳感器為正溫度系數傳感器,即傳感器阻值隨溫度的升高而增大。
激光
傳感器(圖7)利用激光技術進行測量的傳感器。它由激光器、激光檢測器和測量電路組成。激光傳感器是新型測量儀表,它的優點是能實現無接觸遠距離測量,速度快,精度高,量程大,抗光、電*力強等。
激光傳感器工作時,先由激光發射二極管對準目標發射激光脈沖。經目標反射后激光向各方向散射。部分散射光返回到傳感器接收器,被光學系統接收后成像到雪崩光電二極管上。雪崩光電二極管是一種內部具有放大功能的光學傳感器,因此它能檢測極其微弱的光信號,并將其轉化為相應的電信號。
利用激光的高方向性、高單色性和高亮度等特點可實現無接觸遠距離測量。激光傳感器常用于長度(ZLS-Px)、距離(LDM4x)、振動(ZLDS10X)、速度(LDM30x)、方位等物理量的測量,還可用于探傷和大氣污染物的監測等。
霍爾
傳感器(圖8)霍爾傳感器是根據霍爾效應制作的一種磁場傳感器,廣泛地應用于工業自動化技術、檢測技術及信息處理等方面。霍爾效應是研究半導體材料性能的基本方法。通過霍爾效應實驗測定的霍爾系數,能夠判斷半導體材料的導電類型、載流子濃度及載流子遷移率等重要參數。
霍爾傳感器分為線性型霍爾傳感器和開關型霍爾傳感器兩種。
1、線性型霍爾傳感器由霍爾元件、線性放大器和射極跟隨器組成,它輸出模擬量。
2、開關型霍爾傳感器由穩壓器、霍爾元件、差分放大器,斯密特觸發器和輸出級組成,它輸出數字量。
霍爾電壓隨磁場強度的變化而變化,磁場越強,電壓越高,磁場越弱,電壓越低。霍爾電壓值很小,通常只有幾個毫伏,但經集成電路中的放大器放大,就能使該電壓放大到足以輸出較強的信號。若使霍爾集成電路起傳感作用,需要用機械的方法來改變磁場強度。下圖所示的方法是用一個轉動的葉輪作為控制磁通量的開關,當葉輪葉片處于磁鐵和霍爾集成電路之間的氣隙中時,磁場偏離集成片,霍爾電壓消失。這樣,霍爾集成電路的輸出電壓的變化,就能表示出葉輪驅動軸的某一位置,利用這一工作原理,可將霍爾集成電路片用作用點火正時傳感器。霍爾效應傳感器屬于被動型傳感器,它要有外加電源才能工作,這一特點使它能檢測轉速低的運轉情況。
溫度
傳感器(圖9)1、室溫管溫傳感器:室溫傳感器用于測量室內和室外的環境溫度,管溫傳感器用于測量蒸發器和冷凝器的管壁溫度。室溫傳感器和管溫傳感器的形狀不同,但溫度特性基本*。按溫度特性劃分,美的使用的室溫管溫傳感器有二種類型:1.常數B值為4100K±3%,基準電阻為25℃對應電阻10KΩ±3%。在0℃和55℃對應電阻公差約為±7%;而0℃以下及55℃以上,對于不同的供應商,電阻公差會有一定的差別。溫度越高,阻值越小;溫度越低,阻值越大。離25℃越遠,對應電阻公差范圍越大。
2、排氣溫度傳感器:排氣溫度傳感器用于測量壓縮機頂部的排氣溫度,常數B值為3950K±3%,基準電阻為90℃對應電阻5KΩ±3%。
3、模塊溫度傳感器:模塊溫度傳感器用于測量變頻模塊(IGBT或IPM)的溫度,用的感溫頭的型號是602F-3500F,基準電阻為25℃對應電阻6KΩ±1%。幾個典型溫度的對應阻值分別是:-10℃→(25.897~28.623)KΩ;0℃→(16.3248~17.7164)KΩ;50℃→(2.3262~2.5153)KΩ;90℃→(0.6671~0.7565)KΩ。
溫度傳感器的種類很多,經常使用的有熱電阻:PT100、PT1000、Cu50、Cu100;熱電偶:B、E、J、K、S等。溫度傳感器不但種類繁多,而且組合形式多樣,應根據不同的場所選用合適的產品。
測溫原理:根據電阻阻值、熱電偶的電勢隨溫度不同發生有規律的變化的原理,我們可以得到所需要測量的溫度值。
無線溫度
無線溫度傳感器將控制對象的溫度參數變成電信號,并對接收終端發送無線信號,對系統實行檢測、調節和控制。可直接安裝在一般工業熱電阻、熱電偶的接線盒內,與現場傳感元件構成一體化結構。通常和無線中繼、接收終端、通信串口、電子計算機等配套使用,這樣不僅節省了補償導線和電纜,而且減少了信號傳遞失真和干擾,從而獲的了高精度的測量結果。
無線溫度傳感器廣泛應用于化工、冶金、石油、電力、水處理、制藥、食品等自動化行業。例如:高壓電纜上的溫度采集;水下等惡劣環境的溫度采集;運動物體上的溫度采集;不易連線通過的空間傳輸傳感器數據;單純為降低布線成本選用的數據采集方案;沒有交流電源的工作場合的數據測量;便攜式非固定場所數據測量。
智能
傳感器(圖10)智能傳感器的功能是通過模擬人的感官和大腦的協調動作,結合*以來測試技術的研究和實際經驗而提出來的。是一個相對獨立的智能單元,它的出現對原來硬件性能苛刻要求有所減輕,而靠軟件幫助可以使傳感器的性能大幅度提高。
1、信息存儲和傳輸——隨著全智能集散控制系統(SmartDistributedSystem)的飛速發展,對智能單元要求具備通信功能,用通信網絡以數字形式進行雙向通信,這也是智能傳感器關鍵標志之一。智能傳感器通過測試數據傳輸或接收指令來實現各項功能。如增益的設置、補償參數的設置、內檢參數設置、測試數據輸出等。
2、自補償和計算功能——多年來從事傳感器研制的工程技術人員一直為傳感器的溫度漂移和輸出非線性作大量的補償工作,但都沒有從根本上解決問題。而智能傳感器的自補償和計算功能為傳感器的溫度漂移和非線性補償開辟了新的道路。這樣,放寬傳感器加工精密度要求,只要能保證傳感器的重復性好,利用微處理器對測試的信號通過軟件計算,采用多次擬合和差值計算方法對漂移和非線性進行補償,從而能獲得較精確的測量結果壓力傳感器。
3、自檢、自校、自診斷功能——普通傳感器需要定期檢驗和標定,以保證它在正常使用時足夠的準確度,這些工作一般要求將傳感器從使用現場拆卸送到實驗室或檢驗部門進行。對于在線測量傳感器出現異常則不能及時診斷。采用智能傳感器情況則大有改觀,首先自診斷功能在電源接通時進行自檢,診斷測試以確定組件有*。其次根據使用時間可以在線進行校正,微處理器利用存在EPROM內的計量特性數據進行對比校對。
4、復合敏感功能——觀察周圍的自然現象,常見的信號有聲、光、電、熱、力、化學等。敏感元件測量一般通過兩種方式:直接和間接的測量。而智能傳感器具有復合功能,能夠同時測量多種物理量和化學量,給出能夠較全面反映物質運動規律的信息。
光敏
光敏傳感器是較常見的傳感器之一,它的種類繁多,主要有:光電管、光電倍增管、光敏電阻、光敏三極管、太陽能電池、紅外線傳感器、紫外線傳感器、光纖式光電傳感器、色彩傳感器、CCD和CMOS圖像傳感器等。它的敏感波長在可見光波長附近,包括紅外線波長和紫外線波長。光傳感器不只局限于對光的探測,它還可以作為探測元件組成其他傳感器,對許多非電量進行檢測,只要將這些非電量轉換為光信號的變化即可。光傳感器是目前產量多、應用較廣的傳感器之一,它在自動控制和非電量電測技術引中占有非常重要的地位。較簡單的光敏傳感器[2]是光敏電阻,當光子沖擊接合處就會產生電流。
生物
生物傳感器的概念
傳感器(圖11)生物傳感器是用生物活性材料(酶、蛋白質、DNA、抗體、抗原、生物膜等)與物理化學換能器有機結合的一門交叉學科,是發展生物技術*的一種*的檢測方法與監控方法,也是物質分子水平的快速、微量分析方法。各種生物傳感器有以下共同的結構:包括一種或數種相關生物活性材料(生物膜)及能把生物活性表達的信號轉換為電信號的物理或化學換能器(傳感器),二者組合在一起,用現代微電子和自動化儀表技術進行生物信號的再加工,構成各種可以使用的生物傳感器分析裝置、儀器和系統。
生物傳感器的原理
待測物質經擴散作用進入生物活性材料,經分子識別,發生生物學反應,產生的信息繼而被相應的物理或化學換能器轉變成可定量和可處理的電信號,再經二次儀表放大并輸出,便可知道待測物濃度。
生物傳感器的分類
按照其感受器中所采用的生命物質分類,可分為:微生物傳感器、免疫傳感器、組織傳感器、細胞傳感器、酶傳感器、DNA傳感器等等。
按照傳感器器件檢測的原理分類,可分為:熱敏生物傳感器、場效應管生物傳感器、壓電生物傳感器、光學生物傳感器、聲波道生物傳感器、酶電極生物傳感器、介體生物傳感器等。
按照生物敏感物質相互作用的類型分類,可分為親和型和代謝型兩種。
視覺
工作原理:
傳感器(圖12)視覺傳感器是指:具有從一整幅圖像捕獲光線的數發千計像素的能力,圖像的清晰和細膩程度常用分辨率來衡量,以像素數量表示。
視覺傳感器具有從一整幅圖像捕獲光線的數以千計的像素。圖像的清晰和細膩程度通常用分辨率來衡量,以像素數量表示。
在捕獲圖像之后,視覺傳感器將其與內存中存儲的基準圖像進行比較,以做出分析。例如,若視覺傳感器被設定為辨別正確地插有八顆螺栓的機器部件,則傳感器知道應該拒收只有七顆螺栓的部件,或者螺栓未對準的部件。此外,無論該機器部件位于視場中的哪個位置,無論該部件是否在360度范圍內旋轉,視覺傳感器都能做出判斷。
應用領域:
視覺傳感器的低成本和易用性已吸引機器設計師和工藝工程師將其集成入各類曾經依賴人工、多個光電傳感器,或根本不檢驗的應用。視覺傳感器的工業應用包括檢驗、計量、測量、定向、瑕疵檢測和分撿。以下只是一些應用范例:
在汽車組裝廠,檢驗由機器人涂抹到車門邊框的膠珠是否連續,是否有正確的寬度;
在瓶裝廠,校驗瓶蓋是否正確密封、裝灌液位是否正確,以及在封蓋之前沒有異物掉入瓶中;
在包裝生產線,確保在正確的位置粘貼正確的包裝標簽;
在藥品包裝生產線,檢驗阿斯匹林藥片的泡罩式包裝中是否有破損或缺失的藥片;
在金屬沖壓公司,以每分鐘逾150片的速度檢驗沖壓部件,比人工檢驗快13倍以上。
位移
傳感器(圖13)位移傳感器又稱為線性傳感器,把位移轉換為電量的傳感器。位移傳感器是一種屬于金屬感應的線性器件,傳感器的作用是把各種被測物理量轉換為電量它分為電感式位移傳感器,電容式位移傳感器,光電式位移傳感器,聲波式位移傳感器,霍爾式位移傳感器。
在這種轉換過程中有許多物理量(例如壓力、流量、加速度等)常常需要先變換為位移,然后再將位移變換成電量。因此位移傳感器是一類重要的基本傳感器。在生產過程中,位移的測量一般分為測量實物尺寸和機械位移兩種。機械位移包括線位移和角位移。按被測變量變換的形式不同,位移傳感器可分為模擬式和數字式兩種。模擬式又可分為物性型(如自發電式)和結構型兩種。常用位移傳感器以模擬式結構型居多,包括電位器式位移傳感器、 電感式位移傳感器、自整角機、電容式位移傳感器、電渦流式位移傳感器、霍爾式位移傳感器等。數字式位移傳感器的一個重要優點是便于將信號直接送入計算機系統。這種傳感器發展迅速,應用日益廣泛。
壓力
壓力傳感器引是工業實踐中較為常用的一種傳感器,其廣泛應用于各種工業自控環境,涉及水利水電、鐵路交通、智能建筑、生產自控、航空航天、*、石化、油井、電力、船舶、機床、管道等眾多行業。
聲波測距離
聲波測距離傳感器采用聲波回波測距原理,運用精確的時差測量技術,檢測傳感器與目標物之間的距離,采用小角度,小盲區聲波傳感器,具有測量準確,無接觸,防水,防腐蝕,低成本等優點,可應于液位,物位檢測,*的液位,料位檢測方式,可保證在液面有泡沫或大的晃動,不易檢測到回波的情況下有穩定的輸出,應用行業:液位,物位,料位檢測,工業過程控制等。
24GHz雷達
RFbeam 24GHz雷達傳感器24GHz雷達傳感器采用高頻微波來測量物體運動速度、距離、運動方向、方位角度信息,采用平面微帶天線設計,具有體積小、質量輕、靈敏度高、穩定強等特點,廣泛運用于智能交通、工業控制、安防、體育運動、智能家居等行業。*2012年11月19日正式發布了《*關于發布24GHz頻段短距離車載雷達設備使用頻率的通知》(*無〔2012〕548號),明確提出24GHz頻段短距離車載雷達設備作為車載雷達設備的規范。[3]
一體化溫度
一體化溫度傳感器一般由測溫探頭(熱電偶或熱電阻傳感器)和兩線制固體電子單元組成。采用固體模塊形式將測溫探頭直接安裝在接線盒內,從而形成一體化的傳感器。一體化溫度傳感器一般分為熱電阻和熱電偶型兩種類型。
熱電阻溫度傳感器是由基準單元、R/V轉換單元、線性電路、反接保護、限流保護、V/I轉換單元等組成。測溫熱電阻信號轉換放大后,再由線性電路對溫度與電阻的非線性關系進行補償,經V/I轉換電路后輸出一個與被測溫度成線性關系的4~20mA的恒流信號。
熱電偶溫度傳感器一般由基準源、冷端補償、放大單元、線性化處理、V/I轉換、斷偶處理、反接保護、限流保護等電路單元組成。它是將熱電偶產生的熱電勢經冷端補償放大后,再帽由線性電路消除熱電勢與溫度的非線性誤差,后放大轉換為4~20mA電流輸出信號。為防止熱電偶測量中由于電偶斷絲而使控溫失效造成事故,傳感器中還設有斷電保護電路。當熱電偶斷絲或接解不良時,傳感器會輸出大值(28mA)以使儀表切斷電源。一體化溫度傳感器具有結構簡單、節省引線、輸出信號大、抗*力強、線性好、顯示儀表簡單、固體模塊抗震防潮、有反接保護和限流保護、工作可靠等優點。一體化溫度傳感器的輸出為統一的 4~20mA信號;可與微機系統或其它常規儀表匹配使用。也可用戶要求做成防爆型或防火型測量儀表。
液位
1、浮球式液位傳感器
浮球式液位傳感器由磁性浮球、測量導管、信號單元、電子單元、接線盒及安裝件組成。
一般磁性浮球的比重小于0.5,可漂于液面之上并沿測量導管上下移動。導管內裝有測量元件,它可以在外磁作用下將被測液位信號轉換成正比于液位變化的電阻信號,并將電子單元轉換成4~20mA或其它標準信號輸出。該傳感器為模塊電路,具有耐酸、防潮、防震、防腐蝕等優點,電路內部含有恒流反饋電路和內保護電路,可使輸出大電流不過28mA,因而能夠可靠地保護電源并使二次儀表不被損壞。
2、浮簡式液位傳感器
浮筒式液位傳感器是將磁性浮球改為浮筒,它是根據阿基米德浮力原理設計的。浮筒式液位傳感器是利用微小的金屬膜應變傳感技術來測量液體的液位、界位或密度的。它在工作時可以通過現場按鍵來進行常規的設定操作。
3、靜壓或液位傳感器
該傳感器利用液體靜壓力的測量原理工作。它一般選用硅壓力測壓傳感器將測量到的壓力轉換成電信號,再經放大電路放大和補償電路補償,后以4~20mA或0~10mA電流方式輸出。
真空度
真空度傳感器,采用*的硅微機械加工技術生產,以集成硅壓阻力敏元件作為傳感器的核心元件制成的壓力變送器,由于采用硅-硅直接鍵合或硅-派勒克斯玻璃靜電鍵合形成的真空參考壓力腔,及一系列無應力封裝技術及精密溫度補償技術,因而具有穩定性優良、精度高的突出優點,適用于各種情況下壓力的測量與控制。
特點及用途
采用低量程芯片真空絕壓封裝,產品具有高的過載能力。芯片采用真空充注硅油隔離,不銹鋼薄膜過渡傳遞壓力,具有優良的介質兼容性,適用于對316L不銹鋼*的絕大多數氣液體介質真空壓力的測量。真空度傳染其應用于各種工業環境的低真空測量與控制[4]。
韓國品牌的產品:
韓國LS-MECAPION編碼器
韓國康柏斯(CONVEX)馬達
韓國肯泰特(KODUCT)拖鏈
韓國ginice執行機構
韓國BRATO電動伺服齒輪傳動變速裝置
韓國漢吉爾HAN GIL Autowelding旋轉電弧傳感器
韓國NAMKWANG離合器
韓國南光(nam kyeong)離合器
韓國MPSI(mpsolu)
韓國FASYSTEM傳感器
韓國三信株式會社(Samshin Limited )閥
韓國SAMWONTECH溫控器
韓國ERAETECH驅動器
韓國KT&C攝像頭
韓國WISE氣缸
韓國LOLINK模塊
韓國seojin液位開關
韓國DIT離子風扇
韓國VTEC/VMECA真空吸盤
韓國DONGDO探頭
韓國RADIAN壓力變送器(ri-10w ,dud-2t,ri-20w,dud-500k)
日本品牌的產品:
日本甲南KONAN電磁閥
日本基恩士KEYENCE傳感器
日本三菱(MITSUBISHI)變頻器
日本兵田(T.HYODA)溫度計
日本富士(FUJI)繼電器/變頻器
日本Tokimec東京計器電磁閥
日本TAKIGEN工業五金
日本IMV的汽車振動測試設備
日本interface板卡
日本發那科fanuc電機
日本富士FUJI伺服/繼電器/開關
日本小野ONO SOKKI傳感器
日本油研YUKEN液壓
日本hirose液壓元件
日本神威(kamui)換熱器
日本增田masuda過濾器
日本中村工機NAKAMURA KOKI蓄能器
日本東機美TOKIMEC油泵
日本豐興TOYOOKI電磁閥
日本新時代NEW-ERA氣缸
日本共立KYORITSU儀器
日本日置HIOKI萬用表
日本尼利可NIRECO張力控制器
日本五璦特思YTS泵
日本內密控NEMiCON編碼器
日本M-SYSTE隔離器
日本三協Sankyo電耳
日本愛模(M-SYSTEM)變換器
日本松下PANASONIC繼電器
日本歐姆龍OMRON傳感器
日本YASKAWA安川伺服馬達
日本SUMITOMO住友減速機
日本PANASONIC松下馬達
日本NISSEI日精電機
日本SHIMPO電產減速機
日本SIGMA
日本HITACHI日立變頻器
日本MIKIPULLEY三木普利聯軸器
日本TOKIMEC東京計器電磁閥
日本KAWASAKI川崎油壓泵
日本HEIDENHAIN海德漢編碼器
日本TOSHIBA東芝電機/變頻器
日本PISCO碧鑠科
日本橫河Yokogawa變送器
日本SAGINOMIYA鷺宮壓力控制器
日本SPOTRON壓力計
日本Magnescale(原SONY)位移檢測
日本YAMAHA,YM51,YM84,YV112,YVL-88/88X,YV-100X,YV-64D/86D/100D,HSD
日本PANASERT NOZZLES ,MV-II/IIC/IIF/IIV,MK,MQ,MSH-II/III,MPAV,MPA,MMCD,HDP
日本SANYO NOZZLES,TCM-40/60/500/800/1000/3000 SERIES,TOM-60/1000/3000 SERIES
日本FUJI NOZZLES,CP-2/3/4/6/7,IP-II,QP,GILL&V
日本廣瀨Hirose閥門
日本TOYO東洋傳感器
日本理音RION噪音儀NL42/NL52
日本FANUC發那科模塊、主板
日本tamagawa多摩川編碼器、電機
日本山武AZBIL閥門
日本易威奇(iwaki)磁力泵
日本MINIMO美能達工具
日本TACO閥
日本FUJITA蒸汽閥
日本KINGAIR過載泵
渡辺電機 渡邊電機工業 大同端子製造 大同端子製造
DDK DDK連接器 大和電業 大和電業
七星科學研究所 七星科學研究所 東洋技研 東洋技研
鶴賀電機 鶴賀電機 ??????????㈱ 東方馬達
㈱???? 日精 駿河精機 駿河精機
大同端子製造 大同端子製造 ??????????? B&PLUS
東洋技研 東洋技研 日本抵抗器 日本抵抗器
IDEC 和泉 JST JST
進和 進和 山洋電気㈱ 山洋電気㈱
?????? 山武 TAIYO TAIYO
大和電業 大和電業 NEC NEC
春日電機 春日電機 東京特殊電線㈱ 東京特殊電線㈱
?????? 福力百亞 ????㈱ MAX 電線
兼工業 兼工業 三桂製作所 三桂製作所
安川電機 安川電機 大亜真空 大亜真空
ブリヂストン 普利司通 澤藤 澤藤
コーセル 科索電源 嵯峨電機工業 嵯峨電機工業
molex 莫仕(Molex) 大東通信機 大東通信機
㈱???? NA 坂詰製作所 坂詰製作所
???電機㈱ kimden 三橋製作所 三橋製作所
光明理化學 光明理化學 長谷川電機工業 長谷川電機工業
Anywire Anywire ㈱八光電機 ㈱八光電機
㈱???????技研 愛模M-SYSTEM 鈴木 鈴木 聲波切割機
proface proface 緑測器 緑測器
????電業㈱ 丸安maruyasu-elc ダイキン工業 大金
????? 寶山 ホダカ
近藤製作所 近藤製作所 新菱 新菱
福田電機 福田電機 オーム電機 歐姆電機
日新計器 日新計器 TDK???? TDK
NOK NOK 日東 日東
㈱???研究所 MACOME 理化工業 理化工業
三愛 三愛 妙徳 妙徳
㈱???研究所 MACOME 駿河精機 駿河精機
高須油機工業 高須油機工業 ニューマシン 新機械
㈱??????? interface 東電社 東電社
センテック 勝鐵克
ワシノ機器 WASHINO メトロール 美德龍
扶桑精機 扶桑精機 山本電機製作所 山本電機製作所
品川測器製作所 品川測器製作所 住友重機械工業 住友重機械工業
大崎電業社 大崎電業社 三木 三木
??????? 松下
ニレコ 尼利可 ???計測器 日本MULTIMIC
日幸電機製作所 日幸電機製作所 AND AND
?????電機㈱ 美國電機 巖田製作所 巖田製作所
㈱第???????? 第電子 三菱 三菱
アマダミヤチ 天田米亞基 三栄電機 三栄電機
specwell specwell 日東工器㈱ 日東工器㈱
多治見無線電機 多治見無線電機 日本電産???? NIDEC SERVO
㈱??? 日富
可編程溫度控制器 SHINKO TECHNOS/東邦電子/AZBIL/希曼頓(SHIMADEN)
記錄儀 SHINKO TECHNOS/CHINO/AZBIL/橫河電機
溫濕度調節儀 CHINO/AZBIL/VAISALA
溫度傳感器 SHINKO TECHNOS/日本電測(NIHONDENSOKU)/岡崎製作所(OKAZAKI)
代理生產基板溫度調節器 NIPPO/東邦電子
非接觸溫度傳感器 日本奧普士(OPTEX)/美國FLIR
氣缸 SMC/CKD/德國費斯托(FESTO)/小金井(KOGANEI)
高波烙鐵 GOOD FEEL(韓國)
恒溫槽 小金井(KOGANEI)/長野(NAGANO)/ISUZU ELECTRIC
恒溫器 松尾電機(MATSUO)/旭計器(ASAHIKEIKI)
流體控制閥 CKD/PISCO/SMC/小金井(KOGANEI)
各種工業用加熱器 坂口電熱(SAKAGUCHI)/八光電機(HAKKO ELECTRIC)/泉電熱(IZUMI DENNETSU)/東京特殊電線(TOTOKU ELECTRIC)
薄板加熱器 O&M HEATER/八光電機(HAKKO ELECTRIC)/BLOWER/AMPERE
珀耳帖致冷器 歐姆電機(OHM ELECTRIC)/大和電業(DAIWA DENGYO)/APISTE/德國威圖(RITTAL)/東浜工業(TOHIN)信號傳感器 第電子/鶴賀電機(TSURUGA)/MTT/M-SYSTEM/渡邊電機工業
多用功率表 第電子/竹本電機
速度計 優愛尼克斯(UINICS)
數字式面板表 渡邊電機工業/新基(THINKY)
模擬儀 東京計器/竹本電機/第電子
記錄繼電器 鶴賀電機(TSURUGA)/東京計器/竹本電機
稱重放大器 尤尼帕斯/艾安得(A&D)/美蓓亞(MINEBEA)
負重電池表 尤尼帕斯/艾安得(A&D)/美蓓亞(MINEBEA)/渡邊電機工業
電子計數器 萊茵(LINE)
光學變換器 德國菲尼克斯/德國魏德米勒信號傳感器 第電子/鶴賀電機(TSURUGA)/MTT/M-SYSTEM/渡邊電機工業
多用功率表 第電子/竹本電機
速度計 優愛尼克斯(UINICS)
數字式面板表 渡邊電機工業/新基(THINKY)
模擬儀 東京計器/竹本電機/第電子
記錄繼電器 鶴賀電機(TSURUGA)/東京計器/竹本電機
稱重放大器 尤尼帕斯/艾安得(A&D)/美蓓亞(MINEBEA)
負重電池表 尤尼帕斯/艾安得(A&D)/美蓓亞(MINEBEA)/渡邊電機工業
電子計數器 萊茵(LINE)
光學變換器 德國菲尼克斯/德國魏德米勒無線系統 神視(SUNX)/恩科義(NKE)/ANYWIRE
信號塔 派特萊(PATLITE)/DIGITAL
生產控制顯示裝置 HERUTU ELECTRONICS/派特萊(PATLITE)
遠程模擬控制系統 NEC PLATFORMS/*電子/SAXA
光學標識系統 北洋電機/東洋電機
無線模塊 HERUTU ELECTRONICS/CIRCUIT DESIGN
離子發生器 春日電機/西西蒂(SHISHIDO)/藤宮靜(HUGLE)VESSEL
電纜線 日立電線/日本吉野川電線(YOSHINOGAWA)/日本大電電線(DYDEN)
墨水噴射印刷機 美國偉迪捷(VIDEOJET)/日立廠機
鋁框 SPACIO
電腦鎖 SDS
話音合成器 派特萊(PATLITE)/DIGITAL
光通信模塊 七星科學研究所
水冷卻器 小金井(KOGANEI)
操作箱/操作架 摂津金屬/日東工業/德國威圖(RITTAL)
激光標記 天田米亞基AMADA MIYACHI/神視(SUNX)/GRAVOTECH
熱熔融設備 ITW DYNATEC
自動轉矩驅動 URYU SEISAKU
油霧回收機 川崎重工/昭和電機/歐姆電機
其他*的產品:
荷蘭BETA壓力開關
丹麥C-MAC繼電器
英國BEKA顯示儀
瑞典特夫洛TAPFLO泵
國產蠕變測量尺
英國RGS-Electro-pneumatic電磁閥
芬蘭RAUTE PRECISION電子秤稱重顯示儀
印度ROTEX電磁閥
丹麥BRODERSEN電流表
加拿大Maxtri connector連接器
瑞典LEINE LINDE編碼器
芬蘭AVS氣動元件
荷蘭HOUTTUIN螺桿泵
國產溫控器FCD-2000
法國法雷(FERRAZ)熔斷器
英國senstronics傳感器
法國霸高BACO按鈕開關
中國臺灣JPE快速接頭
英國HEPCO傳動產品
西班牙INTEVA快速接頭
加拿大艾莎(ELSA)預警系統器
瑞典ABB電機
法國Pneumatis普利特斯皮囊
瑞士emwb電機
法國施耐德(schneider)低壓工控
英國Radiodetection雷迪探測器
奧地利Kraus&Naimer(K&N)開關(全系列)
法國高諾斯Crouzet繼電器
中國臺灣鐘茂(SITH)快插接頭
英國METROSEAL絕緣地毯
瑞士eao電器
中國臺灣Honor電機
法國Sensorex傳感器
中國臺灣ANSON葉片泵
瑞士EAO開關
法國施耐德Schneider電氣
中國臺灣MOUJEN限位開關
威綸通WEINVIEW觸摸屏
瑞士迪芘油墨(Teca-Print)移印設備
丹麥丹佛斯DANFOSS】OMV、OMT 、OMR 、OMS、 OMH系列馬達等全系列液壓產品
瑞士Selectron控制模組
英國斯邁德SMARTSCAN光幕
英國CMR控制器(231A0000P0300M12)
丹麥格蘭富grundfos水泵
瑞士BUCHER布赫油泵
中國臺灣凡宜FINETEK開關
法國利萊森瑪Leroy-somer調壓板(AVR,R450)
瑞士SAIA-BURGESS開關
瑞士宜科ELCO編碼器
法國SADTEM變壓器
英國SAREL工業箱
加拿大GREYSTONE格瑞斯通溫濕度傳感器
波蘭野牛BISON精密卡盤
瑞士格博Gprtops精密活
瑞士伊芬戈Ifanger精密微調鏜刀柄
瑞士格貝爾gerber膨脹芯軸
瑞士LB微型齒輪銑刀
瑞士ZENITH泵
瑞士SCT切斷,切槽刀
法國OLAER蓄能器、皮囊
英國STAFFA馬達
瑞典WesterMo調制解調器
英國Matcon(麥頓)料筒
荷蘭ELEKTROKOV變壓器
瑞士EAO開關
英國斯邁德SMARTSCAN光幕
西班牙發格(FAGOR)光柵尺
芬蘭維薩拉VAISALA儀
法國MARECHAL點觸式插頭
英國Headlinefilters過濾器
奧地利JCT冷凝器
瑞士AQUAMETRO燃油流量計
瑞典Scanjet Marine清倉機
瑞士huba壓力變送器
西班牙utilcell(尤梯爾)稱重傳感器
瑞士LUCIFER(魯西佛)泛用型電磁閥
法國LEGRIS樂可利接頭
捷克aquametro燃油流量計
瑞士CONTRINEX光電開關
瑞士trafag傳感器
中國臺灣尼爾森(NEW SUN)氣動元件
中國臺灣山耐斯(SUN RISE)氣動元件
中國臺灣精銳APEX
法國SUNTEC油泵
英國Renishaw雷尼紹計量
瑞典ATLAS COPCO空壓機
英國FFE豪邁振動開關
瑞士trafag壓力開關
瑞士rotronic公司之各類溫濕度測量儀
加拿大VELAN威蘭閥門
中國臺灣solenoid電磁閥
中國臺灣MCN明椿減速機
芬蘭TRAFOX變壓器,
瑞典JOKAB安全繼電器
無錫德為源自動化科技有限公司進口產品范圍:機器人技術:機器人、AGV車、 服務機器人、機器人仿真及視覺系統、相關機器、裝置及零部件
工業自動化科技:組裝及搬運系統、線性定位系統、工業影像處理系統、控制系統、PLC、SCADA、 傳感器和執行器、工業用電腦、通訊、網絡和現場總線系統、嵌入式系統、 測量和測試系統、工業自動化科技數據獲取及辨別系統、激光技術、自動化科技服務、空壓技術與設備。
電氣系統:變壓器、電池和不間斷電源、伺服電機和變頻器、傳動、機械驅動系統、電線及電纜附件、電氣控制系統用電氣開關裝置和設備、電工及光電部件、電力電工測試和檢測設備
工業自動化科技信息技術及軟件:工廠集成化管理軟件、 工業IT軟件、工業基本系統及開發工具、工廠生產軟件、工業用互聯網/工廠內局域網、工廠外部局域網解決方案、服務。
儀器儀表:調節器、敏感元件及測量裝置、變送器、測試儀、計量儀、指示器、電子測量儀器、執行器及調節閥,定位器、稱重裝置、信號處理器、智能化儀表、分析和光學設備及儀表、實驗室儀器設備。
儀表材料元器件及附件:系統元器件、部件及控制用附件、現場總線附件、電線、電纜、機箱、機殼、連接器、端子、過濾器、泵,閥門、光纖及機電元器件、低壓電器、工業電器、開關、電源,激光與光電子設備無錫德為源自動化科技有限公司
現場控制器主單元 8M
PM802F
現場控制器主單元 16M
PM803F
Serial通信模件
FI820F
Profibus DPV1通信模件
電容式物位
電容式物位傳感器適用于工業企業在生產過程中進行測量和控制生產過程,主要用作類導電與非導電介質的液體液位或粉粒狀固體料位的遠距離連續測量和指示。
電容式液位傳感器由電容式傳感器與電子模塊電路組成,它以兩線制4~20mA恒定電流輸出為基型,經過轉換,可以用三線或四線方式輸出,輸出信號形成為 1~5V、0~5V、0~10mA等標準信號。電容傳感器由絕緣電極和裝有測量介質的圓柱形金屬容器組成。當料位上升時,因非導電物料的介電常數明顯小于空氣的介電常數,所以電容量隨著物料高度的變化而變化。傳感器的模塊電路由基準源、脈寬調制、轉換、恒流放大、反饋和限流等單元組成。采用脈寬調特原理進行測量的優點是頻率較低,對周圍元射頻干擾、穩定性好、線性好、無明顯溫度漂移等。
銻電極酸度
銻電極酸度傳感器是集 PH檢測、自動清洗、電信號轉換為一體的工業在線分析儀表,它是由銻電極與參考電極組成的PH值測量系統。在被測酸性溶液中,由于銻電極表面會生成三氧化二銻氧化層,這樣在金屬銻面與三氧化二銻之間會形成電位差。該電位差的大小取決于三所氧化二銻的濃度,該濃度與被測酸性溶液中氫離子的適度相對應。如果把銻、三氧化二銻和水溶液的適度都當作1,其電極電位就可用能斯特公式計算出來。
銻電極酸度傳感器中的固體模塊電路由兩大部分組成。為了現場作用的安全起見,電源部分采用交流24V為二次儀表供電。這一電源除為清洗電機提供驅動電源外,還應通過電流轉換單元轉換成相應的直流電壓,以供變送電路使用。第二部分是測量傳感器電路,它把來自傳感器的基準信號和PH酸度信號經放大后送給斜率調整和定位調整電路,以使信號內阻降低并可調節。將放大后的PH信號與溫度被償信號進行迭加后再差進轉換電路,后輸出與PH值相對應的4~20mA恒流電流信號給二次儀表以完成顯示并控制PH值。
酸堿鹽
酸、堿、鹽濃度傳感器通過測量溶液電導值來確定濃度。它可以在線連續檢測工業過程中酸、堿、鹽在水溶液中的濃度含量。這種傳感器主要應用于鍋爐給水處理、化工溶液的配制以及環保等工業生產過程。
酸、堿、鹽濃度傳感器的工作原理是:在一定的范圍內,酸堿溶液的濃度與其電導率的大小成比例。因而,只要測出溶液電導率的大小變可得知酸堿濃度的高低。當被測溶液流入電導池時,如果忽略電極極化和分布電容,則可以等效為一個純電阻。在有恒壓交變電流流過時,其輸出電流與電導率成線性關系,而電導率又與溶液中酸、堿濃度成比例關系。因此只要測出溶液電流,便可算出酸、堿、鹽的濃度。
酸、堿、鹽濃度傳感器主要由電導池、電子模塊、顯示表頭和殼體組成。電子模塊電路則由激勵電源、電導池、電導放大器、相敏整流器、解調器、溫度補償、過載保護和電流轉換等單元組成。
電導
它是通過測量溶液的電導值來間接測量離子濃度的流程儀表(一體化傳感器),可在線連續檢測工業過程中水溶液的電導率。
由于電解質溶液與金屬導體一樣的電的良導體,因此電流流過電解質溶液時必有電阻作用,且符合歐姆定律。但液體的電阻溫度特性與金屬導體相反,具有負向溫度特性。為區別于金屬導體,電解質溶液的導電能力用電導(電阻的倒數)或電導率(電阻率的倒數)來表示。當兩個互相絕緣的電極組成電導池時,若在其中間放置待測溶液,并通以恒壓交變電流,就形成了電流回路。如果將電壓大小和電極尺寸固定,則回路電流與電導率就存在一定的函數關系。這樣,測了待測溶液中流過的電流,就能測出待測溶液的電導率。電導傳感器的結構和電路與酸、堿、鹽濃度傳感器相同。[5]
7主要分類
編輯
按用途
壓力敏和力敏傳感器、位置傳感器、液位傳感器、能耗傳感器、速度傳感器、加速度傳感器、射線輻射傳感器、熱敏傳感器。
按原理
振動傳感器、濕敏傳感器、磁敏傳感器、氣敏傳感器、真空度傳感器、生物傳感器等。
按輸出信號
模擬傳感器:將被測量的非電學量轉換成模擬電信號。
數字傳感器:將被測量的非電學量轉換成數字輸出信號(包括直接和間接轉換)。
膺數字傳感器:將被測量的信號量轉換成頻率信號或短周期信號的輸出(包括直接或間接轉換)。
開關傳感器:當一個被測量的信號達到某個特定的閾值時,傳感器相應地輸出一個設定的低電平或高電平信號。
按其制造工藝
傳感器(圖3)集成傳感器是用標準的生產硅基半導體集成電路的工藝技術制造的。通常還將用于初步處理被測信號的部分電路也集成在同一芯片上。
薄膜傳感器則是通過沉積在介質襯底(基板)上的,相應敏感材料的薄膜形成的。使用混合工藝時,同樣可將部分電路制造在此基板上。
厚膜傳感器是利用相應材料的漿料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后進行熱處理,使厚膜成形。
陶瓷傳感器采用標準的陶瓷工藝或其某種變種工藝(溶膠、凝膠等)生產。
完成適當的預備性操作之后,已成形的元件在高溫中進行燒結。厚膜和陶瓷傳感器這二種工藝之間有許多共同特性,在某些方面,可以認為厚膜工藝是陶瓷工藝的一種變型。
每種工藝技術都有自己的優點和不足。由于研究、開發和生產所需的資本投入較低,以及傳感器參數的高穩定性等原因,采用陶瓷和厚膜傳感器比較合理。
按測量目
物理型傳感器是利用被測量物質的某些物理性質發生明顯變化的特性制成的。
化學型傳感器是利用能把化學物質的成分、濃度等化學量轉化成電學量的敏感元件制成的。
生物型傳感器是利用各種生物或生物物質的特性做成的,用以檢測與識別生物體內化學成分的傳感器。
按其構成
基本型傳感器:是一種基本的單個變換裝置。
組合型傳感器:是由不同單個變換裝置組合而構成的傳感器。
應用型傳感器:是基本型傳感器或組合型傳感器與其他機構組合而構成的傳感器。
按作用形式
按作用形式可分為主動型和被動型傳感器。
主動型傳感器又有作用型和反作用型,此種傳感器對被測對象能發出一定探測信號,能檢測探測信號在被測對象中所產生的變化,或者由探測信號在被測對象中產生某種效應而形成信號。檢測探測信號變化方式的稱為作用型,檢測產生響應而形成信號方式的稱為反作用型。雷達與無線電頻率范圍探測器是作用型實例,而光聲效應分析裝置與激光分析器是反作用型實例。
被動型傳感器只是接收被測對象本身產生的信號,如紅外輻射溫度計、紅外攝像裝置等。
8主要特性
編輯
傳感器靜態
傳感器(圖4)傳感器的靜態特性是指對靜態的輸入信號,傳感器的輸出量與輸入量之間所具有相互關系。因為這時輸入量和輸出量都和時間無關,所以它們之間的關系,即傳感器的靜態特性可用一個不含時間變量的代數方程,或以輸入量作橫坐標,把與其對應的輸出量作縱坐標而畫出的特性曲線來描述。表征傳感器靜態特性的主要參數有:線性度、靈敏度、遲滯、重復性、漂移等。
- 線性度:指傳感器輸出量與輸入量之間的實際關系曲線偏離擬合直線的程度。定義為在全量程范圍內實際特性曲線與擬合直線之間的大偏差值與滿量程輸出值之比。
- 靈敏度:靈敏度是傳感器靜態特性的一個重要指標。其定義為輸出量的增量與引起該增量的相應輸入量增量之比。用S表示靈敏度。
- 遲滯:傳感器在輸入量由小到大(正行程)及輸入量由大到小(反行程)變化期間其輸入輸出特性曲線不重合的現象成為遲滯。對于同一大小的輸入信號,傳感器的正反行程輸出信號大小不相等,這個差值稱為遲滯差值。
- 重復性:重復性是指傳感器在輸入量按同一方向作全量程連續多次變化時,所得特性曲線不*的程度。
- 漂移:傳感器的漂移是指在輸入量不變的情況下,傳感器輸出量隨著時間變化,此現象稱為漂移。產生漂移的原因有兩個方面:一是傳感器自身結構參數;二是周圍環境(如溫度、濕度等)。
- 分辨力:當傳感器的輸入從非零值緩慢增加時,在過某一增量后輸出發生可觀測的變化,這個輸入增量稱傳感器的分辨力,即小輸入增量。
- 閾值:當傳感器的輸入從零值開始緩慢增加時,在達到某一值后輸出發生可觀測的變化,這個輸入值稱傳感器的閾值電壓。
傳感器動態
所謂動態特性,是指傳感器在輸入變化時,它的輸出的特性。在實際工作中,傳感器的動態特性常用它對某些標準輸入信號的響應來表示。這是因為傳感器對標準輸入信號的響應容易用實驗方法求得,并且它對標準輸入信號的響應與它對任意輸入信號的響應之間存在一定的關系,往往知道了前者就能推定后者。較常用的標準輸入信號有階躍信號和正弦信號兩種,所以傳感器的動態特性也常用階躍響應和頻率響應來表示。
線性度
通常情況下,傳感器的實際靜態特性輸出是條曲線而非直線。在實際工作中,為使儀表具有均勻刻度的讀數,常用一條擬合直線近似地代表實際的特性曲線、線性度(非線性誤差)就是這個近似程度的一個性能指標。
擬合直線的選取有多種方法。如將零輸入和滿量程輸出點相連的理論直線作為擬合直線;或將與特性曲線上各點偏差的平方和為小的理論直線作為擬合直線,此擬合直線稱為小二乘法擬合直線。
靈敏度
傳感器(圖5)靈敏度是指傳感器在穩態工作情況下輸出量變化△y對輸入量變化△x的比值。
它是輸出一輸入特性曲線的斜率。如果傳感器的輸出和輸入之間顯線性關系,則靈敏度S是一個常數。否則,它將隨輸入量的變化而變化。
靈敏度的量綱是輸出、輸入量的量綱之比。例如,某位移傳感器,在位移變化1mm時,輸出電壓變化為200mV,則其靈敏度應表示為200mV/mm。
當傳感器的輸出、輸入量的量綱相同時,靈敏度可理解為放大倍數。
提高靈敏度,可得到較高的測量精度。但靈敏度愈高,測量范圍愈窄,穩定性也往往愈差。
分辨率
分辨率是指傳感器可感受到的被測量的小變化的能力。也就是說,如果輸入量從某一非零值緩慢地變化。當輸入變化值未過某一數值時,傳感器的輸出不會發生變化,即傳感器對此輸入量的變化是分辨不出來的。只有當輸入量的變化過分辨率時,其輸出才會發生變化。
通常傳感器在滿量程范圍內各點的分辨率并不相同,因此常用滿量程中能使輸出量產生階躍變化的輸入量中的大變化值作為衡量分辨率的指標。上述指標若用滿量程的百分比表示,則稱為分辨率。分辨率與傳感器的穩定性有負相相關性。
9選型原則
編輯
要進行—個具體的測量工作,首先要考慮采用何種原理的傳感器,這需要分析多方面的因素之后才能確定。因為,即使是測量同一物理量,也有多種原理的傳感器可供選用,哪一種原理的傳感器更為合適,則需要根據被測量的特點和傳感器的使用條件考慮以下一些具體問題:量程的大小;被測位置對傳感器體積的要求;測量方式為接觸式還是非接觸式;信號的引出方法,有線或是非接觸測量;傳感器的來源,國產還是進口,價格能否承受,還是自行研制。[6]
在考慮上述問題之后就能確定選用何種類型的傳感器,然后再考慮傳感器的具體性能指標。
靈敏度的選擇
通常,在傳感器的線性范圍內,希望傳感器的靈敏度越高越好。因為只有靈敏度高時,與被測量變化對應的輸出信號的值才比較大,有利于信號處理。但要注意的是,傳感器的靈敏度高,與被測量無關的外界噪聲也容易混入,也會被放大系統放大,影響測量精度。因此,要求傳感器本身應具有較高的信噪比,盡量減少從外界引入的干擾信號。
傳感器的靈敏度是有方向性的。當被測量是單向量,而且對其方向性要求較高,則應選擇其它方向靈敏度小的傳感器;如果被測量是多維向量,則要求傳感器的交叉靈敏度越小越好。
頻率響應特性
傳感器的頻率響應特性決定了被測量的頻率范圍,必須在允許頻率范圍內保持不失真。實際上傳感器的響應總有—定延遲,希望延遲時間越短越好。
傳感器的頻率響應越高,可測的信號頻率范圍就越寬。
傳感器在動態測量中,應根據信號的特點(穩態、瞬態、隨機等)響應特性,以免產生過大的誤差。
線性范圍
傳感器的線形范圍是指輸出與輸入成正比的范圍。以理論上講,在此范圍內,靈敏度保持定值。傳感器的線性范圍越寬,則其量程越大,并且能保證一定的測量精度。在選擇傳感器時,當傳感器的種類確定以后首先要看其量程是否滿足要求。
但實際上,任何傳感器都不能保證的線性,其線性度也是相對的。當所要求測量精度比較低時,在一定的范圍內,可將非線性誤差較小的傳感器近似看作線性的,這會給測量帶來*的方便。
穩定性
傳感器使用一段時間后,其性能保持不變的能力稱為穩定性。影響傳感器*穩定性的因素除傳感器本身結構外,主要是傳感器的使用環境。因此,要使傳感器具有良好的穩定性,傳感器必須要有較強的環境適應能力。
在選擇傳感器之前,應對其使用環境進行調查,并根據具體的使用環境選擇合適的傳感器,或采取適當的措施,減小環境的影響。
傳感器的穩定性有定量指標,在過使用期后,在使用前應重新進行標定,以確定傳感器的性能是否發生變化。
在某些要求傳感器能*使用而又不能輕易更換或標定的場合,所選用的傳感器穩定性要求更嚴格,要能夠經受住長時間的考驗。
精度
精度是傳感器的一個重要的性能指標,它是關系到整個測量系統測量精度的一個重要環節。傳感器的精度越高,其價格越昂貴,因此,傳感器的精度只要滿足整個測量系統的精度要求就可以,不必選得過高。這樣就可以在滿足同一測量目的的諸多傳感器中選擇比較便宜和簡單的傳感器阿*空壓機配件。
如果測量目的是定性分析的,選用重復精度高的傳感器即可,不宜選用量值精度高的;如果是為了定量分析,必須獲得精確的測量值,就需選用精度等級能滿足要求的傳感器。
對某些特殊使用場合,無法選到合適的傳感器,則需自行設計制造傳感器。自制傳感器的性能應滿足使用要求。[6]
10常用術語
編輯
- 傳感器能感受規定的被測量并按照一定的規律轉換成可用輸出信號的器件或裝置。通常有敏感元件和轉換元件組成。
- 敏感元件是指傳感器中能直接(或響應)被測量的部分。
- 轉換元件指傳感器中能較敏感元件感受(或響應)的被測量轉換成是與傳輸和(或)測量的電信號部分。
- 當輸出為規定的標準信號時,則稱為變送器。
- 測量范圍在允許誤差限內被測量值的范圍。
- 量程測量范圍上限值和下限值的代數差。
- 精確度被測量的測量結果與真值間的*程度。
- 重復性在所有下述條件下,對同一被測的量進行多次連續測量所得結果之間的符合程度:
- 相同測量方法
- 相同觀測者
- 相同測量儀器
- 相同地點
- 相同使用條件
- 在短時期內的重復。
- 分辨力傳感器在規定測量范圍內可能檢測出的被測量的小變化量。
- 閾值能使傳感器輸出端產生可測變化量的被測量的小變化量。
- 零位使輸出的值為小的狀態,例如平衡狀態。
- 激勵為使傳感器正常工作而施加的外部能量(電壓或電流)。
- 大激勵在市內條件下,能夠施加到傳感器上的激勵電壓或電流的大值。
- 輸入阻抗在輸出端短路時,傳感器輸入端測得的阻抗。
- 輸出有傳感器產生的與外加被測量成函數關系的電量。
- 輸出阻抗在輸入端短路時,傳感器輸出端測得的阻抗。
- 零點輸出在室內條件下,所加被測量為零時傳感器的輸出。
- 滯后在規定的范圍內,當被測量值增加和減少時,輸出中出現的大差值。
- 遲后輸出信號變化相對于輸入信號變化的時間延遲。
- 漂移在一定的時間間隔內,傳感器輸出中有與被測量無關的不需要的變化量。
- 零點漂移在規定的時間間隔及室內條件下零點輸出時的變化。
- 靈敏度傳感器輸出量的增量與相應的輸入量增量之比。
- 靈敏度漂移由于靈敏度的變化而引起的校準曲線斜率的變化。
- 熱靈敏度漂移由于靈敏度的變化而引起的靈敏度漂移。
- 熱零點漂移由于周圍溫度變化而引起的零點漂移。
- 線性度校準曲線與某一規定直線*的程度。
- 非線性度校準曲線與某一規定直線偏離的程度。
- *穩定性傳感器在規定的時間內仍能保持不過允許誤差的能力。
- 固有頻率在無阻力時,傳感器的自由(不加外力)振蕩頻率。
- 響應輸出時被測量變化的特性。
- 補償溫度范圍使傳感器保持量程和規定極限內的零平衡所補償的溫度范圍。
- 蠕變當被測量機器多有環境條件保持恒定時,在規定時間內輸出量的變化。
- 絕緣電阻如無其他規定,指在室溫條件下施加規定的直流電壓時,從傳感器規定絕緣部分之間測得的電阻值。
11環境影響
編輯
環境給傳感器造成的影響主要有以下幾個方面:
- 高溫環境對傳感器造成涂覆材料熔化、焊點開化、彈性體內應力發生結構變化等問題。對于高溫環境下工作的傳感器常采用耐高溫傳感器;另外,必須加有隔熱、水冷或氣冷等裝置。
- 粉塵、潮濕對傳感器造成短路的影響。在此環境條件下應選用密閉性很高的傳感器。不同的傳感器其密封的方式是不同的,其密閉性存在著很大差異。常見的密封有密封膠充填或涂覆;橡膠墊機械緊固密封;焊接(氬弧焊、等離子束焊)和抽真空充氮密封。從密封效果來看,焊接密封為,充填涂覆密封膠為差。對于室內干凈、干燥環境下工作的傳感器,可選擇涂膠密封的傳感器,而對于一些在潮濕、粉塵性較高的環境下工作的傳感器,應選擇膜片熱套密封或膜片焊接密封、抽真空充氮的傳感器。
- 在腐蝕性較高的環境下,如潮濕、酸性對傳感器造成彈性體受損或產生短路等影響,應選擇外表面進行過噴塑或不銹鋼外罩,抗腐蝕性能好且密閉性好的傳感器。
- 電磁場對傳感器輸出紊亂信號的影響。在此情況下,應對傳感器的屏蔽性進行嚴格檢查,看其是否具有良好的抗電磁能力。
- 易燃、易爆不僅對傳感器造成*性的損害,而且還給其它設備和人身安全造成很大的威脅。因此,在易燃、易爆環境下工作的傳感器對防爆性能提出了更高的要求:在易燃、易爆環境下必須選用防爆傳感器,這種傳感器的密封外罩不僅要考慮其密閉性,還要考慮到防爆強度,以及電纜線引出頭的防水、防潮、防爆性等。
12選擇使用
編輯
對傳感器數量和量程的選擇:
傳感器數量的選擇是根據電子衡器的用途、秤體需要支撐的點數(支撐點數應根據使秤體幾何重心和實際重心重合的原則而確定)而定。一般來說,秤體有幾個支撐點就選用幾只傳感器,但是對于一些特殊的秤體如電子吊鉤秤就只能采用一個傳感器,一些機電結合秤就應根據實際情況來確定選用傳感器的個數。
傳感器量程的選擇可依據秤的大稱量值、選用傳感器的個數、秤體的自重、可能產生的大偏載及動載等因素綜合評價來確定。一般來說,傳感器的量程越接近分配到每個傳感器的載荷,其稱量的準確度就越高。但在實際使用時,由于加在傳感器上的載荷除被稱物體外,還存在秤體自重、皮重、偏載及振動沖擊等載荷,因此選用傳感器量程時,要考慮諸多方面的因素,保證傳感器的安全和壽命。
傳感器傳感器量程的計算公式是在充分考慮到影響秤體的各個因素后,經過大量的實驗而確定的。
公式如下:
- C=K-0K-1K-2K-3(Wmax+W)/N
- C—單個傳感器的額定量程
- W—秤體自重
- Wmax—被稱物體凈重的大值
- N—秤體所采用支撐點的數量
- K-0—保險系數,一般取值在1.2~1.3之間
- K-1—沖擊系數
- K-2—秤體的重心偏移系數
- K-3—風壓系數
根據經驗,一般應使傳感器工作在其30%~70%量程內,但對于一些在使用過程中存在較大沖擊力的衡器,如動態軌道衡、動態汽車衡、鋼材秤等,在選用傳感器時,一般要擴大其量程,使傳感器工作在其量程的20%~30%之內,使傳感器的稱量儲備量增大,以保證傳感器的使用安全和壽命。
要考慮各種類型傳感器的適用范圍:
傳感器的準確度等級包括傳感器的非線形、蠕變、蠕變恢復、滯后、重復性、靈敏度等技術指標。在選用傳感器的時候,不要單純追求高等級的傳感器,而既要考慮滿足電子秤的準確度要求,又要考慮其成本。
對傳感器等級的選擇必須滿足下列兩個條件:
- 滿足儀表輸入的要求。稱重顯示儀表是對傳感器的輸出信號經過放大、A/D轉換等處理之后顯示稱量結果的。因此,傳感器的輸出信號必須大于或等于儀表要求的輸入信號大小,即將傳感器的輸出靈敏度代人傳感器和儀表的匹配公式,計算結果須大于或等于儀表要求的輸入靈敏度。
- 滿足整臺電子秤準確度的要求。一臺電子秤主要是由秤體、傳感器、儀表三部分組成,在對傳感器準確度選擇的時候,應使傳感器的準確度略高于理論計算值,因為理論往往受到客觀條件的限制,如秤體的強度差一點,儀表的性能不是很好、秤的工作環境比較惡劣等因素都直接影響到秤的準確度要求,因此要從各方面提高要求,又要考慮經濟效益,確保達到目的。
13國家標準
編輯
與傳感器相關的現行國家標準
GB/T 14479-1993 傳感器圖用圖形符號
GB/T 15478-1995 壓力傳感器性能試驗方法
GB/T 15768-1995 電容式濕敏元件與濕度傳感器總規范
GB/T 15865-1995 攝像機(PAL/SECAM/NTSC)測量方法第1部分:非廣播單傳感器攝像機
傳感器GB/T 13823.17-1996 振動與沖擊傳感器的校準方法聲靈敏度測試
GB/T 18459-2001 傳感器主要靜態性能指標計算方法
GB/T 18806-2002 電阻應變式壓力傳感器總規范
GB/T 18858.2-2002 低壓開關設備和控制設備控制器-設備接口(CDI) 第2部分:執行器傳感器接口(AS-i)
GB/T 18901.1-2002 光纖傳感器第1部分:總規范
GB/T 19801-2005 無損檢測聲發射檢測聲發射傳感器的二級校準
GB/T 7665-2005 傳感器通用術語
GB/T 7666-2005 傳感器命名法及代號
GB/T 11349.1-2006 振動與沖擊機械導納的試驗確定第1部分:基本定義與傳感器
GB/T 20521-2006 半導體器件第14-1部分: 半導體傳感器-總則和分類
GB/T 14048.15-2006 低壓開關設備和控制設備第5-6部分:控制電路電器和開關元件-接近傳感器和開關放大器的DC接口(NAMUR)
GB/T 20522-2006 半導體器件第14-3部分: 半導體傳感器-壓力傳感器
GB/T 20485.11-2006 振動與沖擊傳感器校準方法第11部分:激光干涉法振動校準
GB/T 20339-2006 農業拖拉機和機械固定在拖拉機上的傳感器聯接裝置技術規范
GB/T 20485.21-2007 振動與沖擊傳感器校準方法第21部分:振動比較法校準
GB/T 20485.13-2007 振動與沖擊傳感器校準方法第13部分: 激光干涉法沖擊校準
GB/T 13606-2007 土工試驗儀器巖土工程儀器振弦式傳感器通用技術條件
GB/T 21529-2008 塑料薄膜和薄片水蒸氣透過率的測定電解傳感器法
GB/T 20485.1-2008 振動與沖擊傳感器校準方法第1部分: 基本概念
GB/T 20485.12-2008 振動與沖擊傳感器校準方法第12部分:互易法振動校準
GB/T 20485.22-2008 振動與沖擊傳感器校準方法第22部分:沖擊比較法校準
GB/T 7551-2008 稱重傳感器
GB 4793.2-2008 測量、控制和實驗室用電氣設備的安全要求第2部分:電工測量和試驗用手持和手操電流傳感器的特殊要求
GB/T 13823.20-2008 振動與沖擊傳感器校準方法加速度計諧振測試通用方法
GB/T 13823.19-2008 振動與沖擊傳感器的校準方法地球重力法校準
GB/T 25110.1-2010 工業自動化系統與集成工業應用中的分布式安裝第1部分:傳感器和執行器
GB/T 20485.15-2010 振動與沖擊傳感器校準方法第15部分:激光干涉法角振動校準
GB/T 26807-2011 硅壓阻式動態壓力傳感器
GB/T 20485.31-2011 振動與沖擊傳感器的校準方法第31部分:橫向振動靈敏度測試
GB/T 13823.4-1992 振動與沖擊傳感器的校準方法磁靈敏度測試
GB/T 13823.5-1992 振動與沖擊傳感器的校準方法安裝力矩靈敏度測試
GB/T 13823.6-1992 振動與沖擊傳感器的校準方法基座應變靈敏度測試
GB/T 13823.8-1994 振動與沖擊傳感器的校準方法橫向振動靈敏度測試
GB/T 13823.9-1994 振動與沖擊傳感器的校準方法橫向沖擊靈敏度測試
GB/T 13823.12-1995 振動與沖擊傳感器的校準方法安裝在鋼塊上的無阻尼加速度計共振頻率測試
GB/T 13823.14-1995 振動與沖擊傳感器的校準方法離心機法一次校準
GB/T 13823.15-1995 振動與沖擊傳感器的校準方法瞬變溫度靈敏度測試法
GB/T 13823.16-1995 振動與沖擊傳感器的校準方法溫度響應比較測試法
GB/T 13866-1992 振動與沖擊測量描述慣性式傳感器特性的規定
14技術特點
編輯
中國傳感器產業正處于由傳統型向新型傳感器發展的關鍵階段,它體現了新型傳感器向微型化、多功能化、數字化、智能化、系統化和網絡化發展的總趨勢。傳感器技術歷經了多年的發展,其技術的發展大體可分三代:
*代是結構型傳感器,它利用結構參量變化來感受和轉化信號。
第二代是上70年代發展起來的固體型傳感器,這種傳感器由半導體、電介質、磁性材料等固體元件構成,是利用材料某些特性制成。如:利用熱電效應、霍爾效應、光敏效應,分別制成熱電偶傳感器、霍爾傳感器、光敏傳感器。
第三代傳感器是以后剛剛發展起來的智能型傳感器,是微型計算機技術與檢測技術相結合的產物,使傳感器具有一定的人工智能。
傳感器傳感器技術及產業特點
傳感器技術及其產業的特點可以歸納為:基礎、應用兩頭依附;技術、投資兩個密集;產品、產業兩大分散。
基礎、應用兩頭依附
基礎依附,是指傳感器技術的發展依附于敏感機理、敏感材料、工藝設備和計測技術這四塊基石。敏感機理千差萬別,敏感材料多種多樣,工藝設備各不相同,計測技術大相徑庭,沒有上述四塊基石的支撐,傳感器技術難以為繼。
應用依附是指傳感器技術基本上屬于應用技術,其市場開發多依賴于檢測裝置和自動控制系統的應用,才能真正體現出它的高附加效益并形成現實市場。也即發展傳感器技術要以市場為導向,實行需求牽引。
技術、投資兩個密集
技術密集是指傳感器在研制和制造過程中技術的多樣性、邊緣性、綜合性和技藝性。它是多種高技術的集合產物。由于技術密集也自然要求人才密集。
投資密集是指研究開發和生產某一種傳感器產品要求一定的投資強度,尤其是在工程化研究以及建立規模經濟生產線時,更要求較大的投資。
產品、產業兩大分散
產品結構和產業結構的兩大分散是指傳感器產品門類品種繁多(共*類、42小類近6000個品種),其應用滲透到各個產業部門,它的發展既有各產業發展的推動力,又強烈地依賴于各產業的支撐作用。只有按照市場需求,不斷調整產業結構和產品結構,才能實現傳感器產業的全面、協調、持續發展。