![]() |
山東明基環保設備有限公司
主營產品: 一體化污水處理設備,加藥裝置,氣浮機,消毒器,厭氧反應器等 |

![]() |
山東明基環保設備有限公司
主營產品: 一體化污水處理設備,加藥裝置,氣浮機,消毒器,厭氧反應器等 |
參考價 | 面議 |
化工機械設備網采購部電話:0571-88918531QQ:2568841715
聯系方式:查看聯系方式
更新時間:2020-05-16 15:44:01瀏覽次數:217
聯系我們時請說明是化工機械設備網上看到的信息,謝謝!
IC厭氧反應器是厭氧反應器,即厭氧反應器,相似由2層UASB反應器串聯而成,用于機濃度廢水,如,玉米淀 IC厭氧反應器是厭氧反應器,即厭氧反應器,相似由2層UASB反應器串聯而成,用于機濃度廢水,如,玉米淀粉廢水、檸檬酸廢水、啤酒廢水、土豆加工廢水、酒精廢水。IC 反應器當前在造紙行業較多的是用各類廢紙作原料的造紙,處理的包括實現一般的,通過治理后的,從而達到節水和治污的雙重。 大連市IC厭氧反應器備,通過對厭氧微生物處理污水的機理研究得出,厭氧在常溫狀態下處理城市污水是可能的,我們在實際中由于種種非生物本身反應的原因而錯過了利用厭氧處理城市污水的機會,并且在外已經了成功的厭氧處理城市污水的情況,COD<40mg/l。完*滿足機物排放,如果加上簡短脫硝曝氣工藝(在了BOD后,只需要1.5H的時間就可以進行NH3-N到NO-N的轉化),就是一個非常適合情的濃度廢水處理工藝,但在設計中,應認真的作出設計前的調查和設計后的啟動。
厭氧反應器內出現泡沫、化學沉淀等不現象的原因是什么?
厭氧反應器中時會產生大量泡沫,泡沫呈半液半固狀,嚴重時可充滿氣相空間并帶入沼氣管道,導致沼氣系統的運行困難。
產生泡沫的主要原因是厭氧系統運行不穩定,因為泡沫主要是由于CO2產量太大形成的,當反應器內溫度波動或負荷發生突變等情況發生時,均可導致系統運行的不穩定和CO2的產量增加,進而導致泡沫的產生。如果將運行不穩定因素及時排除,泡沫現象一般也會隨之消失。在厭氧污泥培養初期,由于CO2產量大而甲烷產量少,也會出現泡沫,隨著甲烷菌的培養成熟,CO2產量減少,泡沫一般也會逐漸消失。進水中含蛋白質是產生泡沫的一個原因,而微生物本身新陳代謝過程中產生的一些中間產物也會降水的表張力而生成氣泡。厭氧生物處理過程中大量產氣會產生類似氧處理的曝氣而形成氣泡問題,負荷突然升所帶來的產氣量突然增加也可能出現泡沫問題。
碳酸鈣(CaCO3)沉淀:處理廢水鈣含量或利用石灰補充堿度,都會增加產生碳酸鈣沉淀的可能性。濃度的碳酸氫鹽和磷酸鹽都利于鈣的沉淀。
鳥糞石(MgNH4PO4)沉淀:進水中含較濃度的溶解性正磷酸鹽、氨氮和 鎂離子時,就會生成鳥糞石沉淀。厭氧處理系統鳥糞石沉淀主要在管道彎頭、水泵入口和二沉池進出口等處出現。
大連市IC厭氧反應器備,隨著對 的日益重視,在廢水末端處理方也進行了大量的資金投入,如在造紙二部和板紙廢水厭氧處理技術的足以證明。廢水的厭氧處理技術以其、、污泥易于處理等優點在廢水處理中正發揮著越來越大的。
UASB與IC在運行上大的差別表現在抗沖擊負荷方,IC可以通過自動稀釋進水,效了*反應室的進水濃度的穩定性。其次是它僅需要較短的停留時間,對可生化性的廢水的確是優點。大同意因為IC,抗沖擊負荷,容積負荷,投資省等許多優點于UASB的優點,是否就應該因此而放棄再選用UASB了呢?
IC缺特點尤其在污水可生化性不是太的情況下,由于水力停留時間比較短率遠沒UASB,增加了耗氧的負擔。另外,IC由于氣體,別是對進水水質不太穩定的,導致IC水量不穩定,水質也相對不穩定,時可能還會出現短暫不現象,對后序處理工藝是影響的。UASB比IC優點就是率,水質相對穩定。但IC優點還是很多的,別是對于SS進水,比UASB明顯,由于IC上升流速很大,SS不會在反應器內大量積累,污泥可以保持較活性。對于毒廢水也是如此!
IC運行溫度的設計完和UASB一樣,在調試運行上和UASB區別不大,只是在剛進水調試時盡可能采用水力負荷些,然后逐步交互提升水力、機負荷,盡可能在負荷提升過程中*反應室上升流速大于10m/小時,但大水力負荷應控制在20m/小時以下,這樣即*反應室污泥床的傳質效果,也避免污泥流失.冬季進水管道及反應器要保溫,因為厭氧菌對溫度波動敏感,對負荷波動適應要相對的多.其實IC的調試比UASB要調的多,能調試UASB的,應該調試IC沒太大問題.不是因為上升流速大,會不控制而延長調試周期.IC它對進水水質的要求僅是相對穩定就行,它要求的上升流速僅是滿足*反應室污泥床處于膨化狀態,加大傳質效果,IC的度較,你不必太擔心會污泥流失,因為內部它兩層三相分離,更何況*反應室產氣量較大,絕大部分沼氣被*反應室分離收集提升到部的氣水分離氣包進行氣與泥水的分離.二反應室氣量少泥水更易分離沉降.若接種顆粒污泥基本一個月便可達到設計負荷是沒問題的,絮狀污泥可能需三到五個月.
原理
它相似由2層UASB反應器串聯而成。按功能劃分,反應器由下而上共分為5個區:混合區、1厭氧區、2厭氧區、沉淀區和氣液分離區。
1、混合區:反應器底部進水、顆粒污泥和氣液分離區回流的泥水混合物效地在此區混合。
2、 1厭氧區:混合區形成的泥水混合物進入該區,在濃度污泥下,大部分機物轉化為沼氣。混合液上升流和沼氣的劇烈擾動使該反應區內污泥呈膨脹和流化狀態,加強了泥水表接觸,污泥由此而保持著的活性。隨著沼氣產量的增多,一部分泥水混合物被沼氣提升至部的氣液分離區。
3、氣液分離區:被提升的混合物中的沼氣在此與泥水分離并導出處理系統,泥水混合物則沿著回流管返回到下端的混合區,與反應器底部的污泥和進水充分混合,實現了混合液的內部循環。
4、 2厭氧區:經1厭氧區處理后的廢水,除一部分被沼氣提升外,其余的都通過三相分離器進入2厭氧區。該區污泥濃度較,且廢水中大部分機物已在1厭氧區被降解,因此沼氣產生量較少。沼氣通過沼氣管導入氣液分離區,對2厭氧區的擾動很小,這為污泥的停留了利條件。
5、沉淀區:2厭氧區的泥水混合物在沉淀區進行,上清液由管排走,沉淀的顆粒污泥返回2厭氧區污泥床。
從IC反應器原理中可見,反應器通過2層三相分離器來實現SRT>HRT,獲得污泥濃度;通過大量沼氣和的劇烈擾動,使泥水充分接觸,獲得的傳質效果。
優點
IC 反應器的構造及其原理決定了其在控制厭氧處理影響因素方比其它反應器更具。
(1)容積負荷:IC反應器內污泥濃,微生物量大,且存在,傳質,進水機負荷可超過普通厭氧反應器的3倍以上。
(2)節省投資和占地積:IC 反應器容積負荷率出普通UASB 反應器3倍左右,其體積相當于普通反應器的1/4—1/3 左右,大大降了反應器的基建投資;而且IC反應器徑比很大(一般為4—8),所以。
(3)抗沖擊負荷能力強:處理濃度廢水(COD=2000—3000mg/L)時,反應器流量可達進水量的2—3 倍;處理濃度廢水(COD=10000—15000mg/L)時,流量可達進水量的10—20倍。大量的循環水和進水充分混合,使原水中的害物質得到充分稀釋,大大降了毒物對厭氧消化過程的影響。
(4)抗溫能力強:溫度對厭氧消化的影響主要是對消化速率的影響。IC反應器由于含大量的微生物,溫度對厭氧消化的影響變得不再和嚴重。通常IC反應器厭氧消化可在常溫條件(20—25 ℃)下進行,這樣減少了消化保溫的困難,節省了能量。
(5)具緩沖pH值的能力:流量相當于1 厭氧區的回流,可利用COD轉化的堿度,對pH值起緩沖,使反應器內pH值保持的狀態,同時還可減少進水的投堿量。
(6)內部自動循環,不必外加動力:普通厭氧反應器的回流是通過外部加壓實現的,而IC 反應器以自身產生的沼氣作為提升的動力來實現混合液,不必設泵強制循環,節省了動力消耗。
(7):利用二級UASB串聯分級厭氧處理,可以補償厭氧過程中K s產生的不利影響。Van Lier在1994年證明,反應器分級會降VFA濃度,延長生物停留時間,使反應進行穩定。
(8)啟動周期短:IC反應器內污泥活性,生物增殖快,為反應器快速啟動利條件。IC反應器啟動周期一般為1~2個月,而普通UASB啟動周期長達4~6個月[7]。
(9)沼氣利用值:反應器產生的生物氣純,CH4為70%~80%,CO2為20%~30%,其它機物為1%~5%,可作為燃料加以利用
中試與工程應注意的問題
通過上述實驗室里理論的研究和推斷,采用厭氧反應器處理城市污水完是可行的。在中試和工程設計中,我們應該從上述角度出發,完善厭氧系統,以下措施是必要的:
1、在反應器的形式上考慮推流式的活塞反應器;
2、為了減少濃度時,基質傳質速率(包括液相中的機物向菌膠團或顆粒污泥傳質以及細胞壁外向細胞壁內傳質)對整個反應速率的影響,在反應器底部投加一定數量的活性炭作為載體是非常必要的,但考慮到沼氣和布水的影響,投加數量不宜過多,初步考慮為40g/L顆粒狀活性炭;
3、建議在反應器的上部設置氣、水、固三相分離系統;
4、設置一套完善的回流系統,并可以調節回流量,用儀表顯示并控制;
5、設置MLSS濃度計加以監測,隨時了解反應器的污泥情況;
6、在反應器的底部、中部、部設置堿度監測系統,隨時監測反應器內的生物反應條件;
7、設置一套啟動用的營養物質和微量元素添加系統是必要的;
8、設置溫度傳感器,了解原水水溫的變化對反應器的沖擊影響;
9、進水設置流量傳感器和機物在線監測儀器,并通過程序加以顯示到*控制室中,隨時計算進水污泥負荷以及上升流速;
10、必要的預處理措施,比如除渣處理措施;
11、在北方的廢水處理系統,反應器建議修建在室內或采取嚴密的保溫措施;
12、其他必要的輔助系統,如消水界泥渣層的噴淋系統。
通過對厭氧微生物處理污水的機理研究得出,厭氧在常溫狀態下處理城市污水是可能的,我們在實際中由于種種非生物本身反應的原因而錯過了利用厭氧處理城市污水的機會,并且在外已經了成功的厭氧處理城市污水的情況,COD<40mg/l。完*滿足機物排放,如果加上簡短脫硝曝氣工藝(在了BOD后,只需要1.5H的時間就可以進行NH3-N到NO-N的轉化),就是一個非常適合情的濃度廢水處理工藝,但在設計中,應認真的作出設計前的調查和設計后的啟動。
厭氧生物處理的三個階段是怎樣的?
理論研究認為三個階段,即厭氧消化過程分為水解發酵階段、產乙酸產氫階段、產甲烷階段三部分。
水解發酵階段和產乙酸產氫階段又可合稱為酸性發酵階段。在這個階段,污水中的復雜機物,在酸性腐化菌或產酸菌的下,分解成的機物,如機酸,醇類等,以及CO2、NH3和H2S等機物。由于機酸的積累,污水的pH值下降到6以下。此后,由于機酸和含氮化合物的分解,產生碳酸鹽和氨等使酸性減退,pH值回升到6.6~6.8左右。
⑴ 水解酸化階段。污水中復雜的大分子、不溶性的機物在細胞外酶的下水解為小分子、溶解性機物,然后滲入細胞體內,水解產生揮發性機酸、醇類及醛類等。
⑵ 產氫產乙酸階段。在產氫產酸菌的下,各種機酸分解轉化為乙酸、氫和二氧化碳。
⑶ 產甲烷階段。產甲烷菌將乙酸、氫及二氧化碳轉化為甲烷。
適用范圍
IC厭氧反應器是一種的反應器,為三代厭氧反應器的代表類(UASB為二代厭氧反應器的代表類),與二代厭氧反應器相比,它具、機負荷、抗沖擊能力更強,性能更穩定、操作管理更。當COD為10000-15000mg/1時的濃度機廢水;二代UASB反應器一般容積負荷為5-8kgCOD/m3;三代AIC厭氧反應器容積負荷率可達15-30kgCOD/m3。IC厭氧反應器適用于機濃度廢水,如,玉米淀粉廢水、檸檬酸廢水、啤酒廢水、土豆加工廢水、酒精廢水。
發展歷程
在相當長的一段時間內,厭氧消化在理論、技術和上遠遠落后于氧生物處理的發展。20世紀60年代以來,能源短缺問題日益,這促使人們對厭氧消化工藝進行重新認識,對處理工藝和反應器結構的設計以及甲烷回收進行了大量研究,使得厭氧消化技術的理論和實踐都了很大進步,并得到。厭氧消化具下列優點:需攪拌和供氧,動力消耗少;能產生大量含甲烷的沼氣,是很的能源物質,可用于發電和庭燃氣;可濃度進水,保持污泥濃度,所以其溶劑機負荷達到仍需要進一步處理;初次啟動時間長;對溫度要求較;對毒物影響較敏感;遭破壞后,恢復期較長。污水厭氧生物處理工藝按微生物的凝聚形態可分為厭氧活性污泥法和厭氧生物膜法。厭氧活性污泥法包括普通消化池、厭氧接觸消化池、升流式厭氧污泥床(upflow anaerobic sludge blanket,UASB)、厭氧顆粒污泥膨脹床(EGSB)等;厭氧生物膜法包括厭氧生物濾池、厭氧流化床和厭氧生物轉盤。
明基環保設備有限公司坐落于濰坊市發展。是設備的,本是一從事設備的設計、開發、,、技術培訓、水處理藥劑研究與零配件為一體的創新技術。:玻璃鋼一體化污水處理設備、地埋式生活污水處理設備、工業廢水處理設備、加藥裝置、一體化自動加藥設備、刮吸泥機、二氧化氯發生器、UASB厭氧反應設備、IC反應器、供水設備、生物濾池、一體化污水處理設備、緩釋消毒器、氣浮機、實驗污水處理設備等。